Intuitive Definition of a Limit at Infinity Let *f* be a function defined on some interval (a, ∞) or $(-\infty, a)$. Then

$$\lim_{x \to \infty} f(x) = L \quad (\text{or } \lim_{x \to -\infty} f(x) = L)$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be big enough or

The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L$$

Example 1: Sketch a graph of $y = \tan^{-1} x$ and find the $\lim_{x \to \infty} \tan^{-1} x$ and $\lim_{x \to -\infty} \tan^{-1} x$.

Example 2: Find the infinite limits, limits at infinity, and asymptotes for the function f whose graph is shown below.

Example 2: Find the following limits.

4

a)
$$\lim_{x \to \infty} \frac{1}{7x+1}$$
 b) $\lim_{x \to \infty} \sin x$ c) $\lim_{x \to \infty} 3e^{-x}$

How to Determine Limits at Infinity: Divide the numerator and denominator by the highest common power between the numerator and denominator.

Example 3: Find the limit.

(a)
$$\lim_{x \to \infty} \frac{2x+5}{x-4}$$
 (b) $\lim_{x \to \infty} \frac{x+4}{x^2+x-3}$

Example 4: Evaluate the following limits.

(a)
$$\lim_{x \to \infty} \frac{2x^2 + 5}{3x^2 + 1}$$
 (b) $\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1}$ (c) $\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1}$

Example 5: Find the following limits at infinity.

(a)
$$\lim_{x \to \infty} \frac{1 + 5e^x}{7 - e^x}$$
 (b) $\lim_{x \to \infty} [\ln(2 + x) - \ln(1 + x)]$

Example 6: Find the limit.

(a)
$$\lim_{x \to \infty} \frac{x+2}{\sqrt{9x^2+1}}$$
 (b) $\lim_{x \to \infty} \frac{\sqrt{3x^6-x}}{x^3+1}$

How do deal with limits as $x \to -\infty$: Replace x by -x and take the limit as $x \to \infty$.

Example 7: Find the limit.

(a)
$$\lim_{x \to -\infty} \frac{2x}{\sqrt{x^2 + 2}}$$

(b)
$$\lim_{x \to -\infty} (5 - 3e^x)$$

Example 8: Evaluate the following limits.

(a)
$$\lim_{x \to \infty} (\sqrt{x^4 + 6x^2} - x^2)$$
 (b) $\lim_{x \to \infty} (\sqrt{x^2 + 1} - x)$

Example 9: Evaluate the following limits.

(a) $\lim_{x \to 0^{-}} e^{1/x}$

(b) $\lim_{x \to \infty} e^{-2x} \cos x$

Example 11: Sketch the graph of $y = (x - 2)^4 (x + 1)^3 (x - 1)$ by finding its intercepts and its limits as $x \to \pm \infty$.

Example 12: Find the horizontal and vertical asymptotes of $f(x) = \frac{\sqrt{16x^2 + 1}}{2x - 8}$.